2020

2019 | 2018 |  2017  | 2016 | 2015 | 2013 | 20122011 | 2010

2009 | 2008 | 20072005 | 2004 | 2003 | 2002 | 2001 | 2000

1999 | 1998 | 1996 | 1995

2003

Fiser J., Bex PJ. & Makous W. (2003) Contrast conservation in human vision. Vision Research 43 (25), 2637-2648


Visual experience, which is defined by brief saccadic sampling of complex scenes at high contrast, has typically been studied with static gratings at threshold contrast. To investigate how suprathreshold visual processing is related to threshold vision, we tested the temporal integration of contrast in the presence of large, sudden changes in the stimuli such occur during saccades under natural conditions. We observed completely different effects under threshold and suprathreshold viewing conditions. The threshold contrast of successively presented gratings that were either perpendicularly oriented or of inverted phase showed probability summation, implying no detectable interaction between independent visual detectors. However, at suprathreshold levels we found complete algebraic summation of contrast for stimuli longer than 53 ms. The same results were obtained during sudden changes between random noise patterns and between natural scenes. These results cannot be explained by traditional contrast gain-control mechanisms or the effect of contrast constancy. Rather, at suprathreshold levels, the visual system seems to conserve the contrast information from recently viewed images, perhaps for the efficient assessment of the contrast of the visual scene while the eye saccades from place to place. PDF




Weliky M., Fiser J., Hunt RH. & Wagner DN. (2003) Coding of natural scenes in primary visual cortex. Neuron 37 (4), 703-718


Natural scene coding in ferret visual cortex was investigated using a new technique for multi-site recording of neuronal activity from the cortical surface. Surface recordings accurately reflected radially aligned layer 2/3 activity. At individual sites, evoked activity to natural scenes was weakly correlated with the local image contrast structure falling within the cells’ classical receptive field. However, a population code, derived from activity integrated across cortical sites having retinotopically overlapping receptive fields, correlated strongly with the local image contrast structure. Cell responses demonstrated high lifetime sparseness, population sparseness, and high dispersal values, implying efficient neural coding in terms of information processing. These results indicate that while cells at an individual cortical site do not provide a reliable estimate of the local contrast structure in natural scenes, cell activity integrated across distributed cortical sites is closely related to this structure in the form of a sparse and dispersed code. PDF





 

2010

Fiser J., Berkes P., Orbán G. & Lengyel M. (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends in cognitive sciences 14 (3), 119-130 [Highly Cited Paper]


Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty. PDF





 

2002

Fiser J. & Aslin RN. (2002) Statistical learning of new visual feature combinations by infants. Proceedings of the National Academy of Sciences 99 (24), 15822-15826


The ability of humans to recognize a nearly unlimited number of unique visual objects must be based on a robust and efficient learning mechanism that extracts complex visual features from the environment. To determine whether statistically optimal representations of scenes are formed during early development, we used a habituation paradigm with 9-month-old infants and found that, by mere observation of multielement scenes, they become sensitive to the underlying statistical structure of those scenes. After exposure to a large number of scenes, infants paid more attention not only to element pairs that cooccurred more often as embedded elements in the scenes than other pairs, but also to pairs that had higher predictability (conditional probability) between the elements of the pair. These findings suggest that, similar to lower-level visual representations, infants learn higher-order visual features based on the statistical coherence of elements within the scenes, thereby allowing them to develop an efficient representation for further associative learning. PDF | COMMENTARY 1 | COMMENTARY 2




Fiser J. & Aslin RN. (2002) Statistical learning of higher-order temporal structure from visual shape sequences.. Journal of Experimental Psychology: Learning, Memory, and Cognition 28 (3), 458


In 3 experiments, the authors investigated the ability of observers to extract the probabilities of successive shape co-occurrences during passive viewing. Participants became sensitive to several temporal-order statistics, both rapidly and with no overt task or explicit instructions. Sequences of shapes presented during familiarization were distinguished from novel sequences of familiar shapes, as well as from shape sequences that were seen during familiarization but less frequently than other shape sequences, demonstrating at least the extraction of joint probabilities of 2 consecutive shapes. When joint probabilities did not differ, another higher-order statistic (conditional probability) was automatically computed, thereby allowing participants to predict the temporal order of shapes. Results of a single-shape test documented that lower-order statistics were retained during the extraction of higher-order statistics. These results suggest that observers automatically extract multiple statistics of temporal events that are suitable for efficient associative learning of new temporal features. PDF





 

2008

Orbán G., Fiser J., Aslin RN. & Lengyel M. (2008) Bayesian learning of visual chunks by human observers. Proceedings of the National Academy of Sciences 105 (7), 2745-2750


Efficient and versatile processing of any hierarchically structured information requires a learning mechanism that combines lower-level features into higher-level chunks. We investigated this chunking mechanism in humans with a visual pattern-learning paradigm. We developed an ideal learner based on Bayesian model comparison that extracts and stores only those chunks of information that are minimally sufficient to encode a set of visual scenes. Our ideal Bayesian chunk learner not only reproduced the results of a large set of previous empirical findings in the domain of human pattern learning but also made a key prediction that we confirmed experimentally. In accordance with Bayesian learning but contrary to associative learning, human performance was well above chance when pair-wise statistics in the exemplars contained no relevant information. Thus, humans extract chunks from complex visual patterns by generating accurate yet economical representations and not by encoding the full correlational structure of the input. PDF | SUPPLEMENTARY





 

2010

Fiser J., Berkes P., Orbán G. & Lengyel M. (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends in cognitive sciences 14 (3), 119-130 [Highly Cited Paper]


Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty. PDF





 

2012

Janacsek K., Fiser J. & Nemeth D. (2012) The best time to acquire new skills: age-related differences in implicit sequence learning across the human lifespan. Developmental science 15 (4), 496-505


Implicit skill learning underlies obtaining not only motor, but also cognitive and social skills through the life of an individual. Yet, the ontogenetic changes in humans’ implicit learning abilities have not yet been characterized, and, thus, their role in acquiring new knowledge efficiently during development is unknown. We investigated such learning across the lifespan, between 4 and 85 years of age with an implicit probabilistic sequence learning task, and we found that the difference in implicitly learning high- vs. low-probability events – measured by raw reaction time (RT) – exhibited a rapid decrement around age of 12. Accuracy and z-transformed data showed partially different developmental curves, suggesting a re-evaluation of analysis methods in developmental research. The decrement in raw RT differences supports an extension of the traditional two-stage lifespan skill acquisition model: in addition to a decline above the age 60 reported in earlier studies, sensitivity to raw probabilities and, therefore, acquiring new skills is significantly more effective until early adolescence than later in life. These results suggest that due to developmental changes in early adolescence, implicit skill learning processes undergo a marked shift in weighting raw probabilities vs. more complex interpretations of events, which, with appropriate timing, prove to be an optimal strategy for human skill learning. PDF




McIlreavy L., Fiser J. & Bex PJ. (2012) Impact of simulated central scotomas on visual search in natural scenes. Optometry and vision science: official publication of the American Academy of Optometry


In performing search tasks, the visual system encodes information across the visual field at a resolution inversely related to eccentricity and deploys saccades to place visually interesting targets upon the fovea, where resolution is highest. The serial process of fixation, punctuated by saccadic eye movements, continues until the desired target has been located. Loss of central vision restricts the ability to resolve the high spatial information of a target, interfering with this visual search process. We investigate oculomotor adaptations to central visual field loss with gaze-contingent artificial scotomas. Methods. Spatial distortions were placed at random locations in 25° square natural scenes. Gaze-contingent artificial central scotomas were updated at the screen rate (75 Hz) based on a 250 Hz eye tracker. Eight subjects searched the natural scene for the spatial distortion and indicated its location using a mouse-controlled cursor. Results. As the central scotoma size increased, the mean search time increased [F(3,28) = 5.27, p = 0.05], and the spatial distribution of gaze points during fixation increased significantly along the x [F(3,28) = 6.33, p = 0.002] and y [F(3,28) = 3.32, p = 0.034] axes. Oculomotor patterns of fixation duration, saccade size, and saccade duration did not change significantly, regardless of scotoma size. In conclusion, there is limited automatic adaptation of the oculomotor system after simulated central vision loss. PDF




White B., Abbott LF. & Fiser J. (2012) Suppression of cortical neural variability is stimulus-and state-dependent. Journal of neurophysiology 108 (9), 2383-2392


Internally generated, spontaneous activity is ubiquitous in the cortex, yet it does not appear to have a significant negative impact on sensory processing. Various studies have found that stimulus onset reduces the variability of cortical responses, but the characteristics of this sup- pression remained unexplored. By recording multiunit activity from awake and anesthetized rats, we investigated whether and how this noise suppression depends on properties of the stimulus and on the state of the cortex. In agreement with theoretical predictions, we found that the degree of noise suppression in awake rats has a nonmonotonic dependence on the temporal frequency of a flickering visual stimulus with an optimal frequency for noise suppression ~2 Hz. This effect cannot be explained by features of the power spectrum of the spontaneous neural activity. The nonmonotonic frequency dependence of the suppression of variability gradually disappears under increasing levels of anesthesia and shifts to a monotonic pattern of increasing suppression with decreasing frequency. Signal-to-noise ratios show a similar, although inverted, dependence on cortical state and frequency. These results suggest the existence of an active noise suppression mechanism in the awake cortical system that is tuned to support signal propagation and coding. PDF





 

2009

Fiser J. (2009) Perceptual learning and representational learning in humans and animals. Learning & behavior 37 (2), 141-153


Traditionally, perceptual learning in humans and classical conditioning in animals have been considered as two very different research areas, with separate problems, paradigms, and explanations. However, a number of themes common to these fields of research emerge when they are approached from the more general concept of representational learning. To demonstrate this, I present results of several learning experiments with human adults and infants, exploring how internal representations of complex unknown visual patterns might emerge in the brain. I provide evidence that this learning cannot be captured fully by any simple pairwise associative learning scheme, but rather by a probabilistic inference process called Bayesian model averaging, in which the brain is assumed to formulate the most likely chunking/grouping of its previous experience into independent representational units. Such a generative model attempts to represent the entire world of stimuli with optimal ability to generalize to likely scenes in the future. I review the evidence showing that a similar philosophy and generative scheme of representation has successfully described a wide range of experimental data in the domain of classical conditioning in animals. These convergent findings suggest that statistical theories of representational learning might help to link human perceptual learning and animal classical conditioning results into a coherent framework. PDF




Fiser J. (2009) The other kind of perceptual learning. Learning & Perception 1 (1), 69-87


In the present review we discuss an extension of classical perceptual learning called the observational learning paradigm. We propose that studying the process how humans develop internal representation of their environment requires modifications of the original perceptual learning paradigm which lead to observational learning. We relate observational learning to other types of learning, mention some recent developments that enabled its emergence, and summarize the main empirical and modeling findings that observational learning studies obtained. We conclude by suggesting that observational learning studies have the potential of providing a unified framework to merge human statistical learning, chunk learning and rule learning. PDF




Berkes P., Turner RE. & Sahani M. (2009) A structured model of video reproduces primary visual cortical organisation, PLoS Computational Biology, 2009. 5(9): e1000495


The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition. PDF




Zito T., Wilbert N., Wiskott L. & Berkes P. (2009) Modular toolkit for data processing (MDP): a Python data processing framework. Frontiers in Neuroinformatics 2:8


Modular toolkit for Data Processing (MDP) is a data processing framework written in Python. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. Computations are performed efficiently in terms of speed and memory requirements. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. MDP has been written in the context of theoretical research in neuroscience, but it has been designed to be helpful in any context where trainable data processing algorithms are used. Its simplicity on the user's side, the variety of readily available algorithms, and the reusability of the implemented units make it also a useful educational tool. PDF





 

2020

Avarguès-Weber A., Finke V., Nagy M., Szabó T., d’Amaro D., Dyer A.G. & Fiser J (2020) Different mechanisms underlie implicit visual statistical learning in honey bees and humans, PNAS 117 (41) 25923-25934


The ability of developing complex internal representations of the environment is considered a crucial antecedent to the emergence of humans’ higher cognitive functions. Yet it is an open question whether there is any fundamental difference in how humans and other good visual learner species naturally encode aspects of novel visual scenes. Using the same modified visual statistical learning paradigm and multielement stimuli, we investigated how human adults and honey bees (Apis mellifera) encode spontaneously, without dedicated training, various statistical properties of novel visual scenes. We found that, similarly to humans, honey bees automatically develop a complex internal representation of their visual environment that evolves with accumulation of new evidence even without a targeted reinforcement. In particular, with more experience, they shift from being sensitive to statistics of only elemental features of the scenes to relying on co-occurrence frequencies of elements while losing their sensitivity to elemental frequencies, but they never encode automatically the predictivity of elements. In contrast, humans involuntarily develop an internal representation that includes single-element and co-occurrence statistics, as well as information about the predictivity between elements. Importantly, capturing human visual learning results requires a probabilistic chunk-learning model, whereas a simple fragment-based memory-trace model that counts occurrence summary statistics is sufficient to replicate honey bees’ learning behavior. Thus, humans’ sophisticated encoding of sensory stimuli that provides intrinsic sensitivity to predictive information might be one of the fundamental prerequisites of developing higher cognitive abilities. PDF




Arató J., Rothkopf C. A. & Fiser J. (2020) Learning in the eyes: specific changes in gaze patterns track explicit and implicit visual learning, bioRxiv 2020.08.03.234039


What is the link between eye movements and sensory learning? Although some theories have argued for a permanent and automatic interaction between what we know and where we look, which continuously modulates human information- gathering behavior during both implicit and explicit learning, there exist surprisingly little evidence supporting such an ongoing interaction. We used a pure form of implicit learning called visual statistical learning and manipulated the explicitness of the task to explore how learning and eye movements interact. During both implicit exploration and explicit visual learning of unknown composite visual scenes, eye movement patterns systematically changed in accordance with the underlying statistical structure of the scenes. Moreover, the degree of change was directly correlated with the amount of knowledge the observers acquired. Our results provide the first evidence for an ongoing and specific interaction between hitherto accumulated knowledge and eye movements during both implicit and explicit learning. PDF





 

2011

Berkes P., Orbán G., Lengyel M. & Fiser J. (2011) Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331 (6013), 83-87 [Highly Cited Paper]


The brain maintains internal models of its environment to interpret sensory inputs and to prepare actions. Although behavioral studies have demonstrated that these internal models are optimally adapted to the statistics of the environment, the neural underpinning of this adaptation is unknown. Using a Bayesian model of sensory cortical processing, we related stimulus-evoked and spontaneous neural activities to inferences and prior expectations in an internal model and predicted that they should match if the model is statistically optimal. To test this prediction, we analyzed visual cortical activity of awake ferrets during development. Similarity between spontaneous and evoked activities increased with age and was specific to responses evoked by natural scenes. This demonstrates the progressive adaptation of internal models to the statistics of natural stimuli at the neural level. PDF | SUPPLEMENTARY




Roser ME., Fiser J., Aslin RN. & Gazzaniga MS. (2011) Right hemisphere dominance in visual statistical learning. Journal of cognitive neuroscience 23 (5), 1088-1099


Several studies report a right hemisphere (RH) advantage for visuo-spatial integration and a left hemisphere (LH) advantage for inferring conceptual knowledge from patterns of covariation. The present study examined hemispheric asymmetry in the implicit learning of new visual-feature combinations. A split-brain patient and normal control participants viewed multi-shape scenes presented in either the right or left visual fields. Unbeknownst to the participants the scenes were composed from a random combination of fixed pairs of shapes. Subsequent testing found that control participants could discriminate fixed-pair shapes from randomly combined shapes when presented in either visual field. The split-brain patient performed at chance except when both the practice and test displays were presented in the left visual field (RH). These results suggest that the statistical learning of new visual features is dominated by visuospatial processing in the right hemisphere and provide a prediction about how fMRI activation patterns might change during unsupervised statistical learning. PDF





 

2010

Fiser J., Berkes P., Orbán G. & Lengyel M. (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends in cognitive sciences 14 (3), 119-130 [Highly Cited Paper]


Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty. PDF





 

2009

Fiser J. (2009) Perceptual learning and representational learning in humans and animals. Learning & behavior 37 (2), 141-153


Traditionally, perceptual learning in humans and classical conditioning in animals have been considered as two very different research areas, with separate problems, paradigms, and explanations. However, a number of themes common to these fields of research emerge when they are approached from the more general concept of representational learning. To demonstrate this, I present results of several learning experiments with human adults and infants, exploring how internal representations of complex unknown visual patterns might emerge in the brain. I provide evidence that this learning cannot be captured fully by any simple pairwise associative learning scheme, but rather by a probabilistic inference process called Bayesian model averaging, in which the brain is assumed to formulate the most likely chunking/grouping of its previous experience into independent representational units. Such a generative model attempts to represent the entire world of stimuli with optimal ability to generalize to likely scenes in the future. I review the evidence showing that a similar philosophy and generative scheme of representation has successfully described a wide range of experimental data in the domain of classical conditioning in animals. These convergent findings suggest that statistical theories of representational learning might help to link human perceptual learning and animal classical conditioning results into a coherent framework. PDF




Fiser J. (2009) The other kind of perceptual learning. Learning & Perception 1 (1), 69-87


In the present review we discuss an extension of classical perceptual learning called the observational learning paradigm. We propose that studying the process how humans develop internal representation of their environment requires modifications of the original perceptual learning paradigm which lead to observational learning. We relate observational learning to other types of learning, mention some recent developments that enabled its emergence, and summarize the main empirical and modeling findings that observational learning studies obtained. We conclude by suggesting that observational learning studies have the potential of providing a unified framework to merge human statistical learning, chunk learning and rule learning. PDF




Berkes P., Turner RE. & Sahani M. (2009) A structured model of video reproduces primary visual cortical organisation, PLoS Computational Biology, 2009. 5(9): e1000495


The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition. PDF




Zito T., Wilbert N., Wiskott L. & Berkes P. (2009) Modular toolkit for data processing (MDP): a Python data processing framework. Frontiers in Neuroinformatics 2:8


Modular toolkit for Data Processing (MDP) is a data processing framework written in Python. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. Computations are performed efficiently in terms of speed and memory requirements. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. MDP has been written in the context of theoretical research in neuroscience, but it has been designed to be helpful in any context where trainable data processing algorithms are used. Its simplicity on the user's side, the variety of readily available algorithms, and the reusability of the implemented units make it also a useful educational tool. PDF





 

2012

Janacsek K., Fiser J. & Nemeth D. (2012) The best time to acquire new skills: age-related differences in implicit sequence learning across the human lifespan. Developmental science 15 (4), 496-505


Implicit skill learning underlies obtaining not only motor, but also cognitive and social skills through the life of an individual. Yet, the ontogenetic changes in humans’ implicit learning abilities have not yet been characterized, and, thus, their role in acquiring new knowledge efficiently during development is unknown. We investigated such learning across the lifespan, between 4 and 85 years of age with an implicit probabilistic sequence learning task, and we found that the difference in implicitly learning high- vs. low-probability events – measured by raw reaction time (RT) – exhibited a rapid decrement around age of 12. Accuracy and z-transformed data showed partially different developmental curves, suggesting a re-evaluation of analysis methods in developmental research. The decrement in raw RT differences supports an extension of the traditional two-stage lifespan skill acquisition model: in addition to a decline above the age 60 reported in earlier studies, sensitivity to raw probabilities and, therefore, acquiring new skills is significantly more effective until early adolescence than later in life. These results suggest that due to developmental changes in early adolescence, implicit skill learning processes undergo a marked shift in weighting raw probabilities vs. more complex interpretations of events, which, with appropriate timing, prove to be an optimal strategy for human skill learning. PDF




McIlreavy L., Fiser J. & Bex PJ. (2012) Impact of simulated central scotomas on visual search in natural scenes. Optometry and vision science: official publication of the American Academy of Optometry


In performing search tasks, the visual system encodes information across the visual field at a resolution inversely related to eccentricity and deploys saccades to place visually interesting targets upon the fovea, where resolution is highest. The serial process of fixation, punctuated by saccadic eye movements, continues until the desired target has been located. Loss of central vision restricts the ability to resolve the high spatial information of a target, interfering with this visual search process. We investigate oculomotor adaptations to central visual field loss with gaze-contingent artificial scotomas. Methods. Spatial distortions were placed at random locations in 25° square natural scenes. Gaze-contingent artificial central scotomas were updated at the screen rate (75 Hz) based on a 250 Hz eye tracker. Eight subjects searched the natural scene for the spatial distortion and indicated its location using a mouse-controlled cursor. Results. As the central scotoma size increased, the mean search time increased [F(3,28) = 5.27, p = 0.05], and the spatial distribution of gaze points during fixation increased significantly along the x [F(3,28) = 6.33, p = 0.002] and y [F(3,28) = 3.32, p = 0.034] axes. Oculomotor patterns of fixation duration, saccade size, and saccade duration did not change significantly, regardless of scotoma size. In conclusion, there is limited automatic adaptation of the oculomotor system after simulated central vision loss. PDF




White B., Abbott LF. & Fiser J. (2012) Suppression of cortical neural variability is stimulus-and state-dependent. Journal of neurophysiology 108 (9), 2383-2392


Internally generated, spontaneous activity is ubiquitous in the cortex, yet it does not appear to have a significant negative impact on sensory processing. Various studies have found that stimulus onset reduces the variability of cortical responses, but the characteristics of this sup- pression remained unexplored. By recording multiunit activity from awake and anesthetized rats, we investigated whether and how this noise suppression depends on properties of the stimulus and on the state of the cortex. In agreement with theoretical predictions, we found that the degree of noise suppression in awake rats has a nonmonotonic dependence on the temporal frequency of a flickering visual stimulus with an optimal frequency for noise suppression ~2 Hz. This effect cannot be explained by features of the power spectrum of the spontaneous neural activity. The nonmonotonic frequency dependence of the suppression of variability gradually disappears under increasing levels of anesthesia and shifts to a monotonic pattern of increasing suppression with decreasing frequency. Signal-to-noise ratios show a similar, although inverted, dependence on cortical state and frequency. These results suggest the existence of an active noise suppression mechanism in the awake cortical system that is tuned to support signal propagation and coding. PDF





 

2007

Fiser J., Scholl BJ. & Aslin RN. (2007) Perceived object trajectories during occlusion constrain visual statistical learning. Psychonomic bulletin & review 14 (1), 173-178


Visual statistical learning of shape sequences was examined in the context of occluded object trajectories. In a learning phase, participants viewed a sequence of moving shapes whose trajectories and speed profiles elicited either a bouncing or a streaming percept: The sequences consisted of a shape moving toward and then passing behind an occluder, after which two different shapes emerged from behind the occluder. At issue was whether statistical learning linked both object transitions equally, or whether the percept of either bouncing or streaming constrained the association between pre- and postocclusion objects. In familiarity judgments following the learning, participants reliably selected the shape pair that conformed to the bouncing or streaming bias that was present during the learning phase. A follow-up experiment demonstrated that differential eye movements could not account for this finding. These results suggest that sequential statistical learning is constrained by the spatiotemporal perceptual biases that bind two shapes moving through occlusion, and that this constraint thus reduces the computational complexity of visual statistical learning. PDF





 

2010

Fiser J., Berkes P., Orbán G. & Lengyel M. (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends in cognitive sciences 14 (3), 119-130 [Highly Cited Paper]


Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty. PDF





 

2009

Fiser J. (2009) Perceptual learning and representational learning in humans and animals. Learning & behavior 37 (2), 141-153


Traditionally, perceptual learning in humans and classical conditioning in animals have been considered as two very different research areas, with separate problems, paradigms, and explanations. However, a number of themes common to these fields of research emerge when they are approached from the more general concept of representational learning. To demonstrate this, I present results of several learning experiments with human adults and infants, exploring how internal representations of complex unknown visual patterns might emerge in the brain. I provide evidence that this learning cannot be captured fully by any simple pairwise associative learning scheme, but rather by a probabilistic inference process called Bayesian model averaging, in which the brain is assumed to formulate the most likely chunking/grouping of its previous experience into independent representational units. Such a generative model attempts to represent the entire world of stimuli with optimal ability to generalize to likely scenes in the future. I review the evidence showing that a similar philosophy and generative scheme of representation has successfully described a wide range of experimental data in the domain of classical conditioning in animals. These convergent findings suggest that statistical theories of representational learning might help to link human perceptual learning and animal classical conditioning results into a coherent framework. PDF




Fiser J. (2009) The other kind of perceptual learning. Learning & Perception 1 (1), 69-87


In the present review we discuss an extension of classical perceptual learning called the observational learning paradigm. We propose that studying the process how humans develop internal representation of their environment requires modifications of the original perceptual learning paradigm which lead to observational learning. We relate observational learning to other types of learning, mention some recent developments that enabled its emergence, and summarize the main empirical and modeling findings that observational learning studies obtained. We conclude by suggesting that observational learning studies have the potential of providing a unified framework to merge human statistical learning, chunk learning and rule learning. PDF




Berkes P., Turner RE. & Sahani M. (2009) A structured model of video reproduces primary visual cortical organisation, PLoS Computational Biology, 2009. 5(9): e1000495


The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition. PDF




Zito T., Wilbert N., Wiskott L. & Berkes P. (2009) Modular toolkit for data processing (MDP): a Python data processing framework. Frontiers in Neuroinformatics 2:8


Modular toolkit for Data Processing (MDP) is a data processing framework written in Python. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. Computations are performed efficiently in terms of speed and memory requirements. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. MDP has been written in the context of theoretical research in neuroscience, but it has been designed to be helpful in any context where trainable data processing algorithms are used. Its simplicity on the user's side, the variety of readily available algorithms, and the reusability of the implemented units make it also a useful educational tool. PDF





 

2003

Fiser J., Bex PJ. & Makous W. (2003) Contrast conservation in human vision. Vision Research 43 (25), 2637-2648


Visual experience, which is defined by brief saccadic sampling of complex scenes at high contrast, has typically been studied with static gratings at threshold contrast. To investigate how suprathreshold visual processing is related to threshold vision, we tested the temporal integration of contrast in the presence of large, sudden changes in the stimuli such occur during saccades under natural conditions. We observed completely different effects under threshold and suprathreshold viewing conditions. The threshold contrast of successively presented gratings that were either perpendicularly oriented or of inverted phase showed probability summation, implying no detectable interaction between independent visual detectors. However, at suprathreshold levels we found complete algebraic summation of contrast for stimuli longer than 53 ms. The same results were obtained during sudden changes between random noise patterns and between natural scenes. These results cannot be explained by traditional contrast gain-control mechanisms or the effect of contrast constancy. Rather, at suprathreshold levels, the visual system seems to conserve the contrast information from recently viewed images, perhaps for the efficient assessment of the contrast of the visual scene while the eye saccades from place to place. PDF




Weliky M., Fiser J., Hunt RH. & Wagner DN. (2003) Coding of natural scenes in primary visual cortex. Neuron 37 (4), 703-718


Natural scene coding in ferret visual cortex was investigated using a new technique for multi-site recording of neuronal activity from the cortical surface. Surface recordings accurately reflected radially aligned layer 2/3 activity. At individual sites, evoked activity to natural scenes was weakly correlated with the local image contrast structure falling within the cells’ classical receptive field. However, a population code, derived from activity integrated across cortical sites having retinotopically overlapping receptive fields, correlated strongly with the local image contrast structure. Cell responses demonstrated high lifetime sparseness, population sparseness, and high dispersal values, implying efficient neural coding in terms of information processing. These results indicate that while cells at an individual cortical site do not provide a reliable estimate of the local contrast structure in natural scenes, cell activity integrated across distributed cortical sites is closely related to this structure in the form of a sparse and dispersed code. PDF





 

2012

Janacsek K., Fiser J. & Nemeth D. (2012) The best time to acquire new skills: age-related differences in implicit sequence learning across the human lifespan. Developmental science 15 (4), 496-505


Implicit skill learning underlies obtaining not only motor, but also cognitive and social skills through the life of an individual. Yet, the ontogenetic changes in humans’ implicit learning abilities have not yet been characterized, and, thus, their role in acquiring new knowledge efficiently during development is unknown. We investigated such learning across the lifespan, between 4 and 85 years of age with an implicit probabilistic sequence learning task, and we found that the difference in implicitly learning high- vs. low-probability events – measured by raw reaction time (RT) – exhibited a rapid decrement around age of 12. Accuracy and z-transformed data showed partially different developmental curves, suggesting a re-evaluation of analysis methods in developmental research. The decrement in raw RT differences supports an extension of the traditional two-stage lifespan skill acquisition model: in addition to a decline above the age 60 reported in earlier studies, sensitivity to raw probabilities and, therefore, acquiring new skills is significantly more effective until early adolescence than later in life. These results suggest that due to developmental changes in early adolescence, implicit skill learning processes undergo a marked shift in weighting raw probabilities vs. more complex interpretations of events, which, with appropriate timing, prove to be an optimal strategy for human skill learning. PDF




McIlreavy L., Fiser J. & Bex PJ. (2012) Impact of simulated central scotomas on visual search in natural scenes. Optometry and vision science: official publication of the American Academy of Optometry


In performing search tasks, the visual system encodes information across the visual field at a resolution inversely related to eccentricity and deploys saccades to place visually interesting targets upon the fovea, where resolution is highest. The serial process of fixation, punctuated by saccadic eye movements, continues until the desired target has been located. Loss of central vision restricts the ability to resolve the high spatial information of a target, interfering with this visual search process. We investigate oculomotor adaptations to central visual field loss with gaze-contingent artificial scotomas. Methods. Spatial distortions were placed at random locations in 25° square natural scenes. Gaze-contingent artificial central scotomas were updated at the screen rate (75 Hz) based on a 250 Hz eye tracker. Eight subjects searched the natural scene for the spatial distortion and indicated its location using a mouse-controlled cursor. Results. As the central scotoma size increased, the mean search time increased [F(3,28) = 5.27, p = 0.05], and the spatial distribution of gaze points during fixation increased significantly along the x [F(3,28) = 6.33, p = 0.002] and y [F(3,28) = 3.32, p = 0.034] axes. Oculomotor patterns of fixation duration, saccade size, and saccade duration did not change significantly, regardless of scotoma size. In conclusion, there is limited automatic adaptation of the oculomotor system after simulated central vision loss. PDF




White B., Abbott LF. & Fiser J. (2012) Suppression of cortical neural variability is stimulus-and state-dependent. Journal of neurophysiology 108 (9), 2383-2392


Internally generated, spontaneous activity is ubiquitous in the cortex, yet it does not appear to have a significant negative impact on sensory processing. Various studies have found that stimulus onset reduces the variability of cortical responses, but the characteristics of this sup- pression remained unexplored. By recording multiunit activity from awake and anesthetized rats, we investigated whether and how this noise suppression depends on properties of the stimulus and on the state of the cortex. In agreement with theoretical predictions, we found that the degree of noise suppression in awake rats has a nonmonotonic dependence on the temporal frequency of a flickering visual stimulus with an optimal frequency for noise suppression ~2 Hz. This effect cannot be explained by features of the power spectrum of the spontaneous neural activity. The nonmonotonic frequency dependence of the suppression of variability gradually disappears under increasing levels of anesthesia and shifts to a monotonic pattern of increasing suppression with decreasing frequency. Signal-to-noise ratios show a similar, although inverted, dependence on cortical state and frequency. These results suggest the existence of an active noise suppression mechanism in the awake cortical system that is tuned to support signal propagation and coding. PDF





 

2007

Fiser J., Scholl BJ. & Aslin RN. (2007) Perceived object trajectories during occlusion constrain visual statistical learning. Psychonomic bulletin & review 14 (1), 173-178


Visual statistical learning of shape sequences was examined in the context of occluded object trajectories. In a learning phase, participants viewed a sequence of moving shapes whose trajectories and speed profiles elicited either a bouncing or a streaming percept: The sequences consisted of a shape moving toward and then passing behind an occluder, after which two different shapes emerged from behind the occluder. At issue was whether statistical learning linked both object transitions equally, or whether the percept of either bouncing or streaming constrained the association between pre- and postocclusion objects. In familiarity judgments following the learning, participants reliably selected the shape pair that conformed to the bouncing or streaming bias that was present during the learning phase. A follow-up experiment demonstrated that differential eye movements could not account for this finding. These results suggest that sequential statistical learning is constrained by the spatiotemporal perceptual biases that bind two shapes moving through occlusion, and that this constraint thus reduces the computational complexity of visual statistical learning. PDF





 

2012

Janacsek K., Fiser J. & Nemeth D. (2012) The best time to acquire new skills: age-related differences in implicit sequence learning across the human lifespan. Developmental science 15 (4), 496-505


Implicit skill learning underlies obtaining not only motor, but also cognitive and social skills through the life of an individual. Yet, the ontogenetic changes in humans’ implicit learning abilities have not yet been characterized, and, thus, their role in acquiring new knowledge efficiently during development is unknown. We investigated such learning across the lifespan, between 4 and 85 years of age with an implicit probabilistic sequence learning task, and we found that the difference in implicitly learning high- vs. low-probability events – measured by raw reaction time (RT) – exhibited a rapid decrement around age of 12. Accuracy and z-transformed data showed partially different developmental curves, suggesting a re-evaluation of analysis methods in developmental research. The decrement in raw RT differences supports an extension of the traditional two-stage lifespan skill acquisition model: in addition to a decline above the age 60 reported in earlier studies, sensitivity to raw probabilities and, therefore, acquiring new skills is significantly more effective until early adolescence than later in life. These results suggest that due to developmental changes in early adolescence, implicit skill learning processes undergo a marked shift in weighting raw probabilities vs. more complex interpretations of events, which, with appropriate timing, prove to be an optimal strategy for human skill learning. PDF




McIlreavy L., Fiser J. & Bex PJ. (2012) Impact of simulated central scotomas on visual search in natural scenes. Optometry and vision science: official publication of the American Academy of Optometry


In performing search tasks, the visual system encodes information across the visual field at a resolution inversely related to eccentricity and deploys saccades to place visually interesting targets upon the fovea, where resolution is highest. The serial process of fixation, punctuated by saccadic eye movements, continues until the desired target has been located. Loss of central vision restricts the ability to resolve the high spatial information of a target, interfering with this visual search process. We investigate oculomotor adaptations to central visual field loss with gaze-contingent artificial scotomas. Methods. Spatial distortions were placed at random locations in 25° square natural scenes. Gaze-contingent artificial central scotomas were updated at the screen rate (75 Hz) based on a 250 Hz eye tracker. Eight subjects searched the natural scene for the spatial distortion and indicated its location using a mouse-controlled cursor. Results. As the central scotoma size increased, the mean search time increased [F(3,28) = 5.27, p = 0.05], and the spatial distribution of gaze points during fixation increased significantly along the x [F(3,28) = 6.33, p = 0.002] and y [F(3,28) = 3.32, p = 0.034] axes. Oculomotor patterns of fixation duration, saccade size, and saccade duration did not change significantly, regardless of scotoma size. In conclusion, there is limited automatic adaptation of the oculomotor system after simulated central vision loss. PDF




White B., Abbott LF. & Fiser J. (2012) Suppression of cortical neural variability is stimulus-and state-dependent. Journal of neurophysiology 108 (9), 2383-2392


Internally generated, spontaneous activity is ubiquitous in the cortex, yet it does not appear to have a significant negative impact on sensory processing. Various studies have found that stimulus onset reduces the variability of cortical responses, but the characteristics of this sup- pression remained unexplored. By recording multiunit activity from awake and anesthetized rats, we investigated whether and how this noise suppression depends on properties of the stimulus and on the state of the cortex. In agreement with theoretical predictions, we found that the degree of noise suppression in awake rats has a nonmonotonic dependence on the temporal frequency of a flickering visual stimulus with an optimal frequency for noise suppression ~2 Hz. This effect cannot be explained by features of the power spectrum of the spontaneous neural activity. The nonmonotonic frequency dependence of the suppression of variability gradually disappears under increasing levels of anesthesia and shifts to a monotonic pattern of increasing suppression with decreasing frequency. Signal-to-noise ratios show a similar, although inverted, dependence on cortical state and frequency. These results suggest the existence of an active noise suppression mechanism in the awake cortical system that is tuned to support signal propagation and coding. PDF





 

2010

Fiser J., Berkes P., Orbán G. & Lengyel M. (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends in cognitive sciences 14 (3), 119-130 [Highly Cited Paper]


Human perception has recently been characterized as statistical inference based on noisy and ambiguous sensory inputs. Moreover, suitable neural representations of uncertainty have been identified that could underlie such probabilistic computations. In this review, we argue that learning an internal model of the sensory environment is another key aspect of the same statistical inference procedure and thus perception and learning need to be treated jointly. We review evidence for statistically optimal learning in humans and animals, and re-evaluate possible neural representations of uncertainty based on their potential to support statistically optimal learning. We propose that spontaneous activity can have a functional role in such representations leading to a new, sampling-based, framework of how the cortex represents information and uncertainty. PDF





 

2009

Fiser J. (2009) Perceptual learning and representational learning in humans and animals. Learning & behavior 37 (2), 141-153


Traditionally, perceptual learning in humans and classical conditioning in animals have been considered as two very different research areas, with separate problems, paradigms, and explanations. However, a number of themes common to these fields of research emerge when they are approached from the more general concept of representational learning. To demonstrate this, I present results of several learning experiments with human adults and infants, exploring how internal representations of complex unknown visual patterns might emerge in the brain. I provide evidence that this learning cannot be captured fully by any simple pairwise associative learning scheme, but rather by a probabilistic inference process called Bayesian model averaging, in which the brain is assumed to formulate the most likely chunking/grouping of its previous experience into independent representational units. Such a generative model attempts to represent the entire world of stimuli with optimal ability to generalize to likely scenes in the future. I review the evidence showing that a similar philosophy and generative scheme of representation has successfully described a wide range of experimental data in the domain of classical conditioning in animals. These convergent findings suggest that statistical theories of representational learning might help to link human perceptual learning and animal classical conditioning results into a coherent framework. PDF




Fiser J. (2009) The other kind of perceptual learning. Learning & Perception 1 (1), 69-87


In the present review we discuss an extension of classical perceptual learning called the observational learning paradigm. We propose that studying the process how humans develop internal representation of their environment requires modifications of the original perceptual learning paradigm which lead to observational learning. We relate observational learning to other types of learning, mention some recent developments that enabled its emergence, and summarize the main empirical and modeling findings that observational learning studies obtained. We conclude by suggesting that observational learning studies have the potential of providing a unified framework to merge human statistical learning, chunk learning and rule learning. PDF




Berkes P., Turner RE. & Sahani M. (2009) A structured model of video reproduces primary visual cortical organisation, PLoS Computational Biology, 2009. 5(9): e1000495


The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition. PDF




Zito T., Wilbert N., Wiskott L. & Berkes P. (2009) Modular toolkit for data processing (MDP): a Python data processing framework. Frontiers in Neuroinformatics 2:8


Modular toolkit for Data Processing (MDP) is a data processing framework written in Python. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. Computations are performed efficiently in terms of speed and memory requirements. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. MDP has been written in the context of theoretical research in neuroscience, but it has been designed to be helpful in any context where trainable data processing algorithms are used. Its simplicity on the user's side, the variety of readily available algorithms, and the reusability of the implemented units make it also a useful educational tool. PDF





 

2002

Fiser J. & Aslin RN. (2002) Statistical learning of new visual feature combinations by infants. Proceedings of the National Academy of Sciences 99 (24), 15822-15826


The ability of humans to recognize a nearly unlimited number of unique visual objects must be based on a robust and efficient learning mechanism that extracts complex visual features from the environment. To determine whether statistically optimal representations of scenes are formed during early development, we used a habituation paradigm with 9-month-old infants and found that, by mere observation of multielement scenes, they become sensitive to the underlying statistical structure of those scenes. After exposure to a large number of scenes, infants paid more attention not only to element pairs that cooccurred more often as embedded elements in the scenes than other pairs, but also to pairs that had higher predictability (conditional probability) between the elements of the pair. These findings suggest that, similar to lower-level visual representations, infants learn higher-order visual features based on the statistical coherence of elements within the scenes, thereby allowing them to develop an efficient representation for further associative learning. PDF | COMMENTARY 1 | COMMENTARY 2




Fiser J. & Aslin RN. (2002) Statistical learning of higher-order temporal structure from visual shape sequences.. Journal of Experimental Psychology: Learning, Memory, and Cognition 28 (3), 458


In 3 experiments, the authors investigated the ability of observers to extract the probabilities of successive shape co-occurrences during passive viewing. Participants became sensitive to several temporal-order statistics, both rapidly and with no overt task or explicit instructions. Sequences of shapes presented during familiarization were distinguished from novel sequences of familiar shapes, as well as from shape sequences that were seen during familiarization but less frequently than other shape sequences, demonstrating at least the extraction of joint probabilities of 2 consecutive shapes. When joint probabilities did not differ, another higher-order statistic (conditional probability) was automatically computed, thereby allowing participants to predict the temporal order of shapes. Results of a single-shape test documented that lower-order statistics were retained during the extraction of higher-order statistics. These results suggest that observers automatically extract multiple statistics of temporal events that are suitable for efficient associative learning of new temporal features. PDF





 

2002

Fiser J. & Aslin RN. (2002) Statistical learning of new visual feature combinations by infants. Proceedings of the National Academy of Sciences 99 (24), 15822-15826


The ability of humans to recognize a nearly unlimited number of unique visual objects must be based on a robust and efficient learning mechanism that extracts complex visual features from the environment. To determine whether statistically optimal representations of scenes are formed during early development, we used a habituation paradigm with 9-month-old infants and found that, by mere observation of multielement scenes, they become sensitive to the underlying statistical structure of those scenes. After exposure to a large number of scenes, infants paid more attention not only to element pairs that cooccurred more often as embedded elements in the scenes than other pairs, but also to pairs that had higher predictability (conditional probability) between the elements of the pair. These findings suggest that, similar to lower-level visual representations, infants learn higher-order visual features based on the statistical coherence of elements within the scenes, thereby allowing them to develop an efficient representation for further associative learning. PDF | COMMENTARY 1 | COMMENTARY 2




Fiser J. & Aslin RN. (2002) Statistical learning of higher-order temporal structure from visual shape sequences.. Journal of Experimental Psychology: Learning, Memory, and Cognition 28 (3), 458


In 3 experiments, the authors investigated the ability of observers to extract the probabilities of successive shape co-occurrences during passive viewing. Participants became sensitive to several temporal-order statistics, both rapidly and with no overt task or explicit instructions. Sequences of shapes presented during familiarization were distinguished from novel sequences of familiar shapes, as well as from shape sequences that were seen during familiarization but less frequently than other shape sequences, demonstrating at least the extraction of joint probabilities of 2 consecutive shapes. When joint probabilities did not differ, another higher-order statistic (conditional probability) was automatically computed, thereby allowing participants to predict the temporal order of shapes. Results of a single-shape test documented that lower-order statistics were retained during the extraction of higher-order statistics. These results suggest that observers automatically extract multiple statistics of temporal events that are suitable for efficient associative learning of new temporal features. PDF